
Burn injury remains an important cause of morbidity and
mortality worldwide. Infectious complications, including
sepsis, septic shock and sepsis-related organ failure, are
common among patients with moderate to severe burn
injuries. Sepsis accompanied by organ failure carries a 30-50%
case-mortality rate, with surviving patients often requiring
prolonged and costly medical care.1-5

Although intensive research has yielded greater understanding
of the pathophysiological processes that follow burn injury
and clinical factors that predispose burn victims to severe
sepsis and septic shock, we are still unable to predict
accurately those patients who are at increased risk for
infectious complications.1 The lack of predictive value
provided by demographic and clinical data, as well as a study
of mortality risk in adopted children,6 suggests that genetic
predisposition influences the risk for serious infection and
outcome from severe injury. Knowledge of which genes and
pathways are important in the host response to severe injury

and infection may provide insight into the molecular etiology
of sepsis, facilitating the discovery of novel pharmacologic
and therapeutic targets.

Methods
Patient Cohort
Under a protocol approved by the Institutional Review Boards
of the University of Texas Southwestern Medical Center and
Parkland Memorial Hospital, patients admitted to the burn
intensive care unit at Parkland Memorial Hospital (Dallas,
TX) with burns covering ≥15% of their total body surface
area (TBSA) were prospectively enrolled between April 1999
and February 2005. In order to remove confounding variables
unrelated to burn injury, individuals were excluded if they
presented with significant non-burn related trauma (injury
severity score ≥16), traumatic or anoxic brain injury, or spinal
cord injury, or if they failed to survive more than 48 hours
post-admission. Sepsis was defined according to the
American College of Chest Physicians and the Society for
Critical Care Medicine consensus definitions. Severe sepsis
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was defined as sepsis temporally accompanied by the need
for intravenous vasopressor drug support (excluding
dopamine at ≤5 µg/kg/min) to maintain blood pressure
(despite adequate fluid resuscitation), along with the presence
of perfusion abnormalities or metabolic acidosis (pH ≤7.30)
or the development of organ failure. Sepsis-related organ
failure was defined as assignment of a Marshall organ
dysfunction score of ≥3 (failure) in one or more organs (lung,
kidney, liver or blood) within 24 hours prior to or 48 hours
following a diagnosis of sepsis.7

DNA Isolation and Genotyping
Venous blood samples were collected in EDTA, and genomic
DNA was isolated by standard protocols.8 Genotypes were
determined by pyrosequencing9 and TaqMan® assays
(Applied Biosystems, Inc., Foster City, CA). Details
regarding genotyping methods have been published
previously.10

Data Analysis
Data were analyzed with SPSS 14.0 statistical software
(SPSS, Chicago, IL.). Categorical variables were compared
using a chi-square test, and continuous data were analyzed by
the Mann-Whitney U test. Multivariate logistic regression
was used to simultaneously evaluate carriage of variant alleles
as risk factors for severe sepsis in the context of demographic
variables (age, ethnicity and gender) and injury characteristics

(burn size and inhalation injury). Exact p-values are reported for
all analyses where p >0.001.

Results
Demographics and Clinical Outcomes
Demographic variables, injury characteristics and clinical
outcomes are presented in table 1. The patient cohort was
relatively young (median age=35), primarily male (75%) and
mostly Caucasian (56%). Forty (18%) of the 228 patients
died. Major burn causes were flame (82%), scald (10%) and
electrical (5%). Fifty-five (24%) patients developed severe
sepsis, defined as sepsis complicated by organ dysfunction or
septic shock. Pneumonia was the primary focus in 81% of
patients with infection. Patients had relatively few co-morbid
medical conditions. Alcohol abuse (43/228, 19%),
hypertension (31/228, 13%) and peripheral cardiovascular
disease (20/228, 9%) were most common. Pre-existing liver,
lung and renal disease were rare (<3%).

Association between Single Nucleotide Polymorphisms (SNP)
and Severe Sepsis Risk after Burn Injury
We evaluated allelic associations in the context of other
potential risk factors by multivariate logistic regression analysis.
After adjustment for age, ethnicity, gender, burn size and
inhalation injury, variant alleles at tumor necrosis factor-alpha
(TNF-α), toll-like receptor 4 (TLR4), interleukin-6 (IL-6) and
cellular differentiation marker 14 (CD14) were significantly
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Variable (n=228) Median/count1

Age (years) 35 (21-48)

Male gender 172 (75%)

Ethnicity
Caucasian 129 (56%)
Hispanic 51 (22%)
African American 41 (18%)
Other 7 (4%)

Percent of total body surface area burned 33 (23-49)

Percent of total body surface area full thickness burn 18 (9-38)

Burn mechanism
Flame 188 (82%)
Scald 22 (10%)
Electrical 12 (5%)
Other 6 (3%)

Inhalation injury 55 (24%)

Died 40 (18%)

Intensive care unit length of stay (days) 16 (4-32)

Total length of stay (days) 27 (16-48)

Duration of mechanical ventilation (days) 10 (0-22)

1Continuous data are presented as medians (25th-75th percentiles). Categorical data are presented as number of patients (percentages).

Table 1. Summary statistics for demographic variables and clinical outcomes following burn injury.

MMRF December 06 Book.qxd  12/27/06  8:38 AM  Page 251



Innate immunity SNPs and severe sepsis risk

associated with an increased risk for severe sepsis. Adjusted odds
ratios (aOR) were 2.60 (95% confidence interval [CI] =
1.23-5.51), 2.94 (95% CI=1.13-7.66), 2.25 (95% CI=1.04-4.88),
and 1.67 (95% CI=1.01-2.76) for the TNF-α 308A, TLR4
+896G, IL-6 174C, and CD14 159C alleles, respectively (table
2). The IL-1β -31 SNP was not significantly associated with
severe sepsis risk (p=0.537). Age and burn size were analyzed
as continuous variables. Odds ratios represented the risk
associated with each increased year of age or percent burn
size. Clinical factors that were significantly associated with
increased risk included inhalation injury (aOR=2.71, 95%
CI=1.25-5.91, p=0.012) and full-thickness (3rd degree) burn
size (aOR=1.03, 95% CI=1.01-1.04, p=0.001). Age, ethnicity,
gender and pre-existing medical conditions did not
significantly affect risk for severe sepsis (table 2).

Discussion
These results provide further evidence that genetic
polymorphisms within innate immunity loci are associated
with an increased risk for severe sepsis after burn injury.
While there has been recent controversy regarding the validity
of genetic association data, confidence in our results was
strengthened by independent evidence that our candidate
SNPs had functional relevance. That is to say, alternate alleles
at these SNPs seem to impact protein abundance or function.

For example, studies have suggested that altered TLR4
signaling plays a role in bacterial resistance, as well as the
development of sepsis and septic shock.11-14 TLR4 is a 
trans-membrane protein which initiates a signaling cascade
that triggers an innate immune response to endotoxin.15,16 A
nonsynonymous substitution of guanine in place of adenine
(A→G) occurs at nucleotide +896 of the human TLR4
mRNA. This transition mutation precipitates substitution of

asparagine with glycine at amino acid residue 299 within the
extracellular domain of the protein. Carriers of the G-allele
exhibit reduced lipopolysaccharide (LPS) responsiveness,
increased risk for septic shock and greater susceptibility to
gram-negative sepsis.14,17,18 Furthermore, transient transfection
experiments in THP-1 cells indicated that the 299Gly allele
was able to disrupt TLR4 signaling.18 Importantly, adenoviral
transfection of wild type TLR4 was able to rescue 
LPS-responsiveness in airway epithelial cells and alveolar
macrophages derived from individuals with TLR4
mutations.18 Finally, associations between altered TLR4
signaling and increased susceptibility or poor outcome have
been observed in several inflammatory disease states.19-21

CD14 initiates a response to Gram-negative organisms by
binding bacterial LPS. Physical contact between CD14-bound
LPS, MD-2 and TLR4 initiates signal transduction within
macrophages.22-24 A cytosine to thymine (C→T) substitution
at nucleotide 159 alters Sp1 nuclear protein binding to the
CD14 promoter, with higher constitutive and LPS-induced
transcription rates for the T-allele.25 The phenotypic impact of
this polymorphism is uncertain. One study identified an
association between this SNP and risk for myocardial
infarction, but a second study did not.26,27 Findings have also
been conflicting in patients with severe sepsis, with some
studies observing no association and another finding a
relationship between the T-allele and death from sepsis.17,28,29

TNF-α has been demonstrated to play a major role in the
pathogenesis of sepsis and its complications after burn
injury.30-33 Furthermore, there is evidence that a guanine to
adenine substitution (G→A) at nucleotide -308 within the
TNF-α promoter affects transcriptional regulation.34,35

Carriage of the A-allele at this position has been associated
with altered transcription and increased risk for infectious and
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Variable (n=228) Odds Ratio 95% CI Odds Ratio P-value

Age 1.010 0.991-1.028 0.305

Full-thickness burn size 1.025 1.011-1.040 0.001

Gender (female) 1.726 0.813-3.662 0.155

Inhalation injury 2.714 1.246-5.912 0.012

Race/ethnicity 1.197 0.828-1.729 0.339

CD14 -159C 1.668 1.007-2.763 0.047

IL-1β -31C 1.272 0.593-2.726 0.537

IL-6 -174C 2.250 1.037-4.884 0.040

TNF-α -308A 2.602 1.229-5.512 0.013

TLR4 +896G 2.943 1.131-7.660 0.027

Odds ratios were determined by multivariate logistic regression. Age and full thickness burn size were analyzed as continuous variables. The
odds ratios listed are for each additional year of age or each 1% increase in burn size. Race/ethnicity included the same categories as in table
1: Caucasian (n=129), Hispanic (n=51), African-American (n=41) and other (n=7).

Table 2. Risk factors for the development of severe sepsis after burn injury following adjustment for multiple factors.
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inflammatory diseases in a number of clinical settings,
including acute graft rejection following renal
transplantation, sepsis among trauma patients, acute malaria
and death from meningococcal disease.34,36-38

IL-6 is known to be important to many cellular responses. Its
functional profile includes pro- and anti-inflammatory
activities, regulation of T-cell activation, induction of
antibody production, activation of coagulation and
stimulation of hematopoiesis.39 Genetic variants within the
promoter region have been shown to regulate IL-6 production,
and may therefore influence the activity of IL-6 in vivo.40-42

A guanine to cytosine (G→C) substitution at nucleotide –174
of the IL-6 promoter has been reported to affect gene
transcription and has been associated with a number of
conditions in which inflammation is considered to play a
role.21,43,44

Allelic associations with severe sepsis were evaluated
previously for 159 of the 228 patients described in this
report.10 The present study included patients with ≥15%
TBSA burns, compared to patients with ≥20% burns in the
previous analysis. Data from the initial investigation generally
agreed with the current results, although several interesting
differences were apparent. Both studies indicated 
full-thickness burn size and allele-carriage at TNF-α and
TLR4 were important risk factors. In the previous report,
inhalation injury was not significantly associated with severe
sepsis risk, while in the current analysis, inhalation injury was
a strongly associated risk factor (p=0.012). Age and gender
exhibited the opposite pattern. Both were significantly
associated with increased risk in the original study but not in
the current report. In contrast to the original investigation, the
analyses we present here showed that carriage of IL-6 -174C
and CD14 -159C alleles was significantly associated with
increased severe sepsis risk (p=0.040 and 0.047,
respectively). Finally, odds ratios for risk alleles at TNF-α and
TLR4 were considerably higher in the initial report than those
we report here (TNF-α, 4.5 vs 2.6; TLR4, 6.4 vs 2.9).
Although if the lower limits of the 95% CI for the odds ratios
are compared, the difference is much less dramatic (TNF-α,
1.7 vs 1.2; TLR4, 1.8 vs 1.1).

These differences are likely to be the result of larger sample
size and subsequently increased statistical power in the

current report. Narrower 95% CI for the odds ratios reported
in the present study support this explanation. However, it is
also possible that there was some systematic difference in the
69 additional patients that were included in the present study.

It is possible that reducing the minimum total burn size for
inclusion in the study from 20% to 15% TBSA affected the
outcome by allowing inclusion of a radically different patient
group. However, this seems unlikely, since only eight of 228
patients had <20% TBSA burns, and these cases were clinically
unremarkable. To investigate the additional patients further, we
compared characteristics of the originally reported sample of
159 patients to the additional group of 69 patients (table 3). As
expected, adjustment of eligibility criteria to include patients
with smaller burns resulted in smaller median total and 
full-thickness burn size for the additional group of patients.
Median age, gender distribution and rate of severe sepsis were
roughly equivalent between the two groups. The mortality rate
was higher among the more recent group of patients (21% vs
16%) as were frequencies of the TNF-α and TLR4 risk alleles.
Unexpectedly, given the increased incidence of mortality,
inhalation injury and carriage of the CD14 C-allele were less
frequent among recently enrolled patients.

We still do not know all the genetic and environmental factors
that influence severe sepsis risk after burn injury. Because we
are unable to adjust for these unknown risk factors, some
groups of patients may appear to have spurious results with
respect to known risk factors. This effect is expected to be
most pronounced among small groups of patients,
demonstrating the essential nature of large sample sizes for
accurate estimation of effect sizes. When large numbers of
patients are evaluated, unmeasured variables tend to be evenly
distributed across known risk factors and have a reduced
impact on results.

Conclusion
This study provides additional evidence for associations
between polymorphisms within innate immunity loci and an
increased risk for severe sepsis after burn injury. In addition,
when contrasted with an earlier examination of this patient
population, these results illustrate the importance of sample
size and statistical power in allelic association studies.
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Severe Median 3rd Total Male Inhalation CD14 TNF-α TLR4 
Sample Died sepsis age degree burn Gender injury C-allele A-allele G-allele

burns

Original report (159) 16% 24% 35 20% 35% 74% 29% 81% 25% 11%

Additional patients (69) 21% 23% 35 15% 29% 76% 22% 74% 32% 13%

Age and gender were equivalent between the two groups. As is evident, the death rate was higher in the recently enrolled patients, despite lower
incidence of severe sepsis and inhalation injury. In addition, total and 3rd degree burn size was smaller in the more recent patient group. Although
frequency of the CD14 risk allele was lower, risk alleles at both TNF-α and TLR4 were more common among recently enrolled patients.

Table 3. Characteristics of the original 159 patients compared to the additional 69 patients included in the current study.
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